Agrawal, A1,2., Parlee, SD3, Perez-Tilve, D4, Li, P3, Pan, J3, Mroz, P.A1, Kruse Hansen5, A.M., Andersen, B5, Finan, B3, Kharitonenkov, A3, DiMarchi, R.D.1,2,3

Amino acid scanning identified a common structural basis for this binding despite only partial sequence interaction, and thus biological function. The 25-terminal amino acids of either FGF21 or 19 were determined.

• Produced largely by the liver and upregulated under states of metabolic stress, including fasting. FGF21 is necessary and sufficient within FGF2118-181 to bind KLβ.

• In line with our hypothesis when the enhanced KLB binding potency of 19C26,A26 was incorporated into a FGF21-based analogues based on 21C25,A164 and 21C25,A171 in vivo.

• The selective increase in peptide antagonism identified via Ala-Scan in 19C26,A26 was unexpected. Study of the modified analogs FGF19,A194 and FGF21-19A which used in the subsequent studies (A). Short 25 Amino acid C-terminal of FGF21 and 19 are fully sufficient to support interaction with KLβ.

• In subchronic studies in humans, FGF21-therapy demonstrated clinically meaningful reductions in body weight, insulin sensitivity and energy expenditure.

• Short 25 Amino acid C-terminal peptides are sufficient for KLβ binding and further provide a platform for optimization of the potency of peptide compared to its native counterpart. These regions are therefore thought to be the common functional elements of utmost importance to KLB binding.

• The selective increase in peptide antagonism identified via Ala-Scan in 19C26,A26 was unexpected. Study of the modified analogs FGF19,A194 and FGF21-19A which used in the subsequent studies (A). Short 25 Amino acid C-terminal of FGF21 and 19 are fully sufficient to support interaction with KLβ.

• Comparisons of calculated IC50s in the in vitro activity that was also pharmacologically superior when studied in vivo. This translation of peptide antagonism into super-agonist of the full-length protein is precedent setting.

• Overall our studies identified key regions of FGF21 and 19 that regulate KLβ binding and further provide proof of principal that by optimizing the C-terminus a more potent analog of FGF21 can be identified. What remains to be seen is whether this increase in potency can overcome limitations of previous clinical FGF21 compounds.

Acknowledgements: We thank Dr. Ku Luo and Mr. Jay Levy for their assistance with peptide synthesis. We thank Drs. Yako, Martin Rivo, Jenna Holland, Joyce Sormo and Kathi Smith for their assistance with in-vivo pharmacology studies.

References: For complete list of references please see Agrawal, A. et al. 148:774e781.

For complete list of references please see Agrawal, A. et al. 148:774e781.