The Expression and Characterization of Disulfide-bond Stabilized Amyloid-β peptides

Sheng Zhang, Stan Yoo, Adam G. Kreutzer, James S. Nowick

Department of Chemistry, University of California, Irvine
Research gap: Aβ oligomers are challenging to study

- Amyloid-β (Aβ)
 - Central to the pathogenesis of Alzheimer’s disease

- Aβ oligomers
 - Toxic
 - Aggregation-prone

http://pdb101.rcsb.org/motm/189
Inspiration: β-hairpin is required for Aβ oligomerization

- β-hairpin → Aβ oligomers
- Conformational change → Aβ fibrils

PDB ID: 2OTK
White: affibody
Green: Aβ β-hairpin

Research goal: study effects of β-hairpin alignment of Aβ
Mutant Aβ plasmids were generated through molecular cloning.
Disulfide-bond stabilized Aβ were expressed and purified

Representative HPLC: Aβ (M1–42/A21C–I32C) (mutant 2)

Representative mass spec: Aβ (M1–42/A21C–I32C) (mutant 2)
Disulfide-bond stabilized mutants like to form oligomers

SDS-PAGE results of Aβ (M1–42) wild-type and disulfide-stabilized peptides (at 31.25 µM)
Disulfide-bond stabilized mutants do not form fibrils

ThT assay results of Aβ (M1–42) wild-type and disulfide-stabilized peptides (at 10 µM)
Reduction of the disulfide-bond induced the formation of the fibrils

ThT assay results of Aβ (M1–42/A21C–I32C) in the absence or presence of TCEP reducing agent (at 10 µM)

- Red line: 10 µM Aβ(M1–42/A21C–I32C) (mut 2) + 5 mM TCEP
- Blue line: 10 µM Aβ(M1–42/A21C–I32C) (mut 2) + water
Disulfide-bond stabilized mutants – circular dichroism
Disulfide-bond stabilized mutants – ATR-FTIR

β-turn

β-sheet

α-helix
Acknowledgments

- Professor James S. Nowick and the Nowick lab members
- National Institutes of Health (NIH)
- UCI Mass Spectrometry facility (Ben Katz and Felix Grun)
- UCI Laser Spectroscopy facility (Dmitry Fishman and Christian Baca)
- The Martin, Tsai, Spitale, Weiss, and Prescher labs at UCI