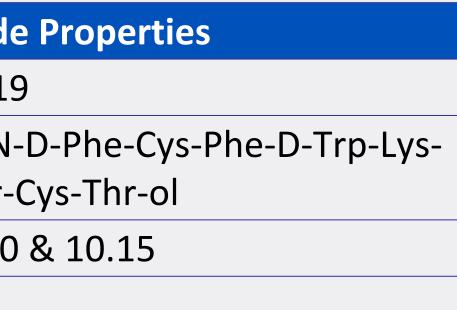

Do Peptide Drugs Interact with Bile Salts in the Gastrointestinal Environment?

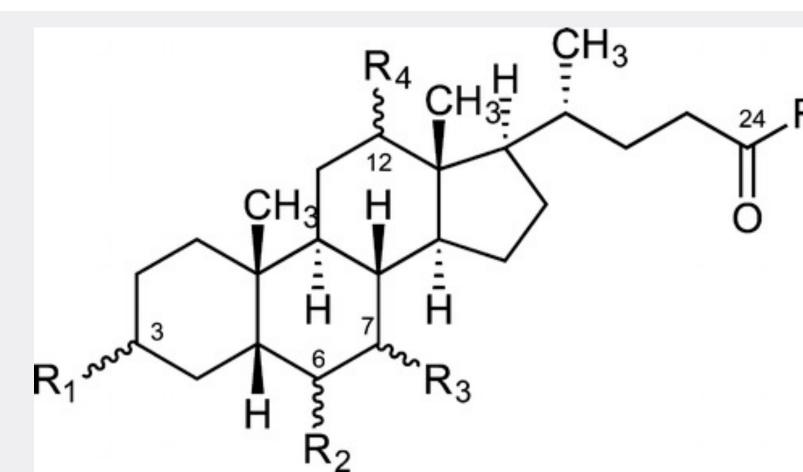
THE UNIVERSITY OF KANSAS

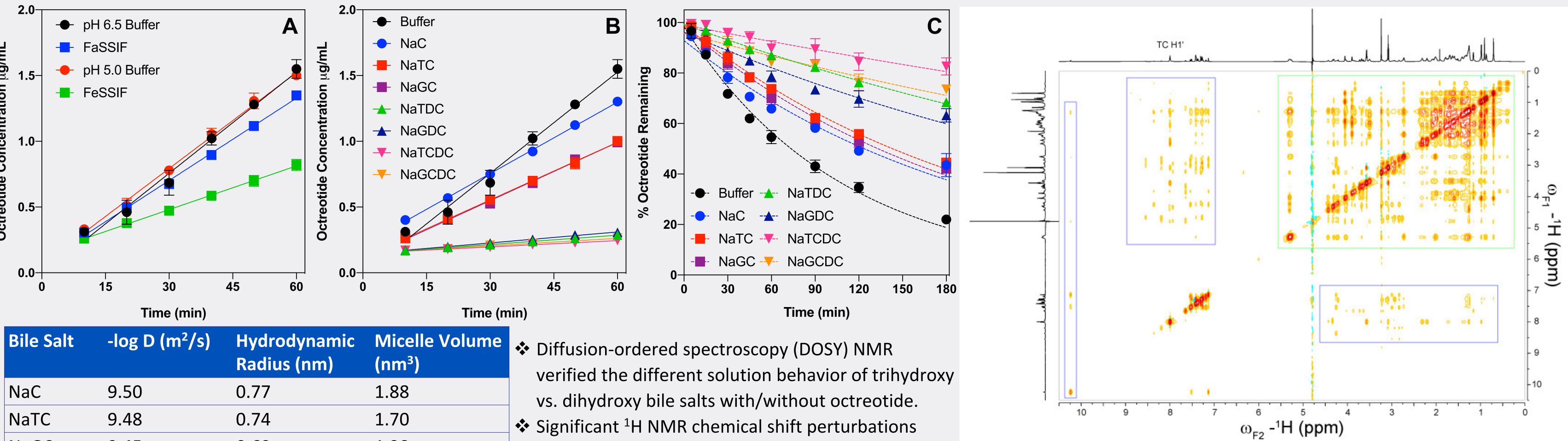
Introduction

- The unique physicochemical properties of peptide drugs e.g. large molecular weight, low membrane permeability & susceptibility to gastrointestinal enzymatic degradation typically necessitate that they be administered via injection [1].
- Semaglutide tablets (Rybelsus[®]) & octreotide capsules (Mycapssa[®]) received FDA approval in 2019 & 2020, respectively, indicating that oral peptide pharmacotherapy is possible.
- Experiments with bile-duct cannulated rodents demonstrated that octreotide intestinal absorption was decreased 6-fold in the presence vs. absence of bile [2].
- The effect of simple bile salt micelles & bile salt/phospholipid mixed micelles present in the gastrointestinal milieu on peptide drug solution behavior has <u>not</u> been investigated.
- Large inter- & intra-individual variability in bile salt concentrations *in vivo* may contribute to low & variable oral peptide absorption/bioavailability.
- Bile salts are unique amphiphiles that aggregate in solution to form simple micelles. A two-step model is proposed; primary micelles form via hydrophobic interactions, then for dihydroxy bile salts, secondary micelles form via hydrogen bonding interactions between the primary micelles [3].
- Commercially available biorelevant fasted state simulated intestinal fluid (FaSSIF) & fed state simulated intestinal fluid (FeSSIF) contain taurocholate as a model bile salt.
- Our <u>aim</u> is to determine & understand the impact of bile salt micelles on peptide drug solution behavior.


Octro	eotid
MW (g/mol)	1019
Sequence	H_2N
	Thr-
pKa(s)	7.00
Isoelectric point	12
cLogP	1 (a
Aqueous solubility	>10

Concentration (mM)	FaSSIF (pH 6.5)	FeSSIF (pH 5.0)
Taurocholate	3	15
Phospholipid	0.75	3.75
Sodium	148	319
Chloride	106	203
Phosphate	29	
Acetic acid		144


Tahnee J. Dening¹, Justin T. Douglas² & Michael J. Hageman¹ ¹Department of Pharmaceutical Chemistry, The University of Kansas ²Nuclear Magnetic Resonance Core Laboratory, The University of Kansas Email: tahneedening@ku.edu



acetate salt) mg/mL

Side-by-side diffusion cell setup

3.5 kDa regenerated cellulose dialysis membrane

Bile Salt	-log D (m²/s)	Hydrodynamic Radius (nm)	Micelle Volume (nm ³)	*
NaC	9.50	0.77	1.88	
NaTC	9.48	0.74	1.70	•••
NaGC	9.45	0.69	1.38	
NaTDC	9.76	1.41	11.74	
NaGDC	9.73	1.32	9.55	
NaTCDC	9.80	1.53	15.06	
NaGCDC	9.80	1.55	15.48	

Results

	Bile Salt	R1	R2	R3	R4	R5	% in Human Bile [4]	CMC (mM)
R_5	Cholate (NaC)	ΟΗ(α)	Н	OH(α)	ΟΗ(α)	O ⁻	trace	10.74 ± 0.09
Ū	Taurocholate (NaTC)	ΟΗ(α)	Н	OH(α)	ΟΗ(α)	NHCH ₂ CH ₂ SO ₃ ⁻	10	9.65 ± 0.29
	Glycocholate (NaGC)	ΟΗ(α)	Н	OH(α)	ΟΗ(α)	NHCH ₂ COO ⁻	30	10.09 ± 0.37
	Taurodeoxycholate (NaTDC)	ΟΗ(α)	Н	Н	ΟΗ(α)	NHCH ₂ CH ₂ SO ₃ ⁻	10	1.68 ± 0.05
	Glycodeoxycholate (NaGDC)	ΟΗ(α)	Н	Н	OH(α)	NHCH ₂ COO ⁻	15	1.82 ± 0.08
	Taurochenodeoxycholate (NaTCDC)	ΟΗ(α)	Н	OH(α)	Н	NHCH ₂ CH ₂ SO ₃ ⁻	5	1.82 ± 0.02
	Glycochenodeoxycholate (NaGCDC)	ΟΗ(α)	Н	OH(α)	Н	NHCH ₂ COO ⁻	30	2.13 ± 0.05

* FaSSIF & FeSSIF commercial biorelevant media significantly decreased octreotide flux relative to buffer by 20 & 54%, respectively (Fig A). All 15 mM micellar bile salt solutions significantly reduced octreotide flux; dihydroxy bile salts had a much larger effect than trihydroxy bile salts (Fig B). Micellar sequestration of octreotide had a positive effect on octreotide enzymatic stability (Fig C).

> were observed when bile salts (0-15 mM) were titrated against 0.1 mM octreotide. Chemical shift perturbations & peak broadening for octreotide indole, amide & aromatic protons were greatest in the presence of dihydroxy bile salts.

Conclusions & Future Directions

* Bile salt micelles have a significant impact on octreotide membrane flux in vitro; dihydroxy bile salts have a larger effect than trihydroxy bile salts. * For amphiphilic & water-soluble peptide drugs like octreotide, interaction with bile salt micelles & mixed micelles in the gastrointestinal environment may negatively affect membrane flux & oral absorption/bioavailability. Characterizing & understanding bile salt interactions is critical. Investigations with Ala-mutated octreotide analogs & other amphiphilic peptide drugs e.g. desmopressin, cyclosporine are ongoing.

Nuclear Overhauser Effect Spectroscopy (NOESY) NMR revealed intermolecular NOEs of FaSSIF (green box) as well as intermolecular NOEs of octreotide & FaSSIF (blue boxes). Experiments were also performed in 15 mM NaTC, NaTDC & NaTCDC solutions. NOEs between peptide aromatic protons & bile salt methyl/steroid ring protons were observed.

References

- 1. Aguirre TAS *et al.* 2016, ADDR, 106.
- 2. Fricker J *et al.* 1992, BJP, 105(4).
- 3. Coello A *et al.* 1996, J Pharm Sci, 85(9).
- 4. Riethorst D *et al.* 2016, J Pharm Sci, 105(2).